Vibration-Rotation Interaction Constants, *l*-Type Doubling Constants and Cubic Force Constants of CH₃I and CD₃I

Hiroatsu Matsuura and John Overend*

Institute for Protein Research, Osaka University, Yamada-kami, Suita, Osaka 565

*Molecular Spectroscopy Laboratory, School of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A. (Received November 22, 1972)

The harmonic parts of the vibration-rotation interaction constants and the *l*-type doubling constants were calculated for CH₃I and CD₃I from the harmonic force field. The harmonic parts were subtracted from the experimental values to obtain the anharmonic parts which give relations among the cubic normal-coordinate force constants. Some of the individual values for the cubic force constants associated with the bending modes were obtained by using the derived relations and the previously estimated values for the stretch-stretch-stretch cubic force constants of the methyl group.

Spectroscopic data for CH₃I and CD₃I have been accumulated by the systematic studies of high-resolution infrared spectra and microwave spectra. The observed values of rotational constants in the ground vibrational state and a knowledge of the dependence of these rotational constants on each of the normal modes of vibration made it possible to determine accurately the equilibrium geometry of the methyl iodide molecule.1) From the experimental values of the vibration-rotation interaction constants (α) and the *l*-type doubling constants (q), supplemented by the calculation of the harmonic contributions to these constants, relations among the cubic normal-coordinate force constants may be derived.2,3) Although the determination of the individual force constants is not possible for this molecule,4) these relations are still important in the estimation and discussion of vibrational anharmonicity in the methyl iodide molecule. In the present study, we have derived such relations for CH₃I and CD₃I from the α and q constants, and have used the relations together with the previously estimated cubic force constants of the CH stretching modes⁵⁾ to obtain some of the individual cubic force constants associated with the bending modes.

Vibration-Rotation Interaction Constants

The vibration-rotation interaction constants α_s^B and α_s^A are defined according to the relations⁶⁾

$$B_{\lceil v \rceil} = B_e - \sum_s \alpha_s {}^B(v_s + d_s/2), \tag{1}$$

and

$$A_{\llbracket v \rrbracket} = A_{\epsilon} - \sum_{s} \alpha_{s}^{A}(v_{s} + d_{s}/2). \tag{2}$$

The α_s^B and α_s^A constants consist of harmonic and anharmonic parts, namely

$$\alpha_s^B = \alpha_s^B(\text{harm}) + \alpha_s^B(\text{anharm}),$$
 (3)

and

$$\alpha_s^A = \alpha_s^A(\text{harm}) + \alpha_s^A(\text{anharm}).$$
 (4)

 $\alpha_s^B(\text{harm})$ and $\alpha_s^B(\text{anharm})$ are given by the following general expressions⁷⁾

$$\alpha_{s}^{B}(\text{harm}) = -\frac{2B_{e}^{2}}{d_{s}\omega_{s}} \times \sum_{\sigma} \left[\sum_{\substack{s'\sigma'\\(s'\neq s)}} \frac{3\omega_{s}^{2} + \omega_{s'}^{2}}{\omega_{s}^{2} - \omega_{s'}^{2}} (\zeta_{s\sigma,s'\sigma'}^{(y)})^{2} + \frac{4}{3} \sum_{\xi} \frac{(a_{s\sigma}^{(y\xi)})^{2}}{I_{\xi\xi}^{(e)}} \right], \quad (5)$$

 $\alpha_{s}^{B}(\text{anharm}) = -4\pi \frac{B_{e}^{2}}{d_{s}} \left(\frac{c}{h} \right)^{1/2} \times \sum_{\sigma} \left[\frac{3k_{sss}a_{s\sigma}^{(yy)}}{\omega_{s}^{3/2}} + \sum_{\substack{s'\sigma' \\ (s'+s)}} \frac{k_{sss'}a_{s'\sigma'}^{(yy)}}{\omega_{s'}^{3/2}} \right].$ (6)

 α_s^A (harm) and α_s^A (anharm) are given by the corresponding expressions with A_e and z, in place of B_e and y, respectively. The harmonic parts of α_s^B and α_s^A may be rewritten into forms more convenient for the present case, as will be given below. k_{sss} and $k_{sss'}$ appearing in the anharmonic parts are the cubic force constants when the potential function of a molecule is expanded in terms of dimensionless normal coordinates q_s :

$$V(q)/hc = \frac{1}{2} \sum_{s} \omega_{s} q_{s}^{2} + \sum_{s \leq s' \leq s''} \sum_{s \leq s''} k_{ss's''} q_{s} q_{s'} q_{s''} + \sum_{s \leq s' \leq s'' \leq s'''} k_{ss's''s''} q_{s} q_{s''} q_{s'''} q_{s'''} + \cdots$$

$$(7)$$

For the non-degenerate modes, $\alpha_s^B(\text{harm})$ and $\alpha_s^B(\text{anharm})$ are given by

$$\alpha_s^B(\text{harm}) = -\frac{2B_e^2}{\omega_s} \times \left[\sum_{t \subseteq E} \frac{4\omega_t^2}{\omega_s^2 - \omega_t^2} (\zeta_{s,ta}^{(y)})^2 + 3\{1 - \sum_i (l_{i,s}^{(y)})^2\} \right], \quad (8)$$

and

$$\alpha_{s}^{B}(\text{anharm}) = -4\pi B_{e}^{2} \left(\frac{c}{h} \right)^{1/2} \times \left[\frac{3k_{sss}a_{s}^{(yy)}}{\omega_{s}^{3/2}} + \sum_{\substack{s' \in A_{s} \\ s' \in A_{s} \\ s' \in A_{s}}} \frac{k_{sss'}a_{s}^{(yy)}}{\omega_{s'}^{3/2}} \right],$$
(9)

¹⁾ H. Matsuura and J. Overend, J. Chem. Phys., 56, 5725 (1972).

²⁾ Y. Morino, K. Kuchitsu, and S. Yamamoto, Spectrochim. Acta, 24A, 335 (1968).

³⁾ T. Oka, J. Chem. Phys., 47, 5410 (1967).

⁴⁾ For molecules with more than three atoms, all of the independent cubic force constants cannot be determined from the experimental values of the α and q constants, since the experimental data are insufficient.

⁵⁾ J. Overend and K. Machida, Spectrochim. Acta, 26A, 1225 (1970).

⁶⁾ G. Herzberg, "Molecular Spectra and Molecular Structure, II. Infrared and Raman Spectra of Polyatomic Molecules," D. Van Nostrand Co., Inc., New York (1945), p. 370.

⁷⁾ For symbols and notation in the forthcoming expressions, see H. H. Nielsen, "Handbuch der Physik," Vol. 37, ed. by S. Flügge, Springer-Verlag, Berlin (1959), p. 173.

and for the doubly-degenerate modes

$$\begin{split} \alpha_{t}^{B}(\text{harm}) &= -\frac{2B_{e}^{2}}{\omega_{t}} \bigg[\sum_{s \in A_{1}} \frac{2\omega_{s}^{2}}{\omega_{t}^{2} - \omega_{s}^{2}} (\zeta_{s, ta}^{(y)})^{2} \\ &+ \sum_{\substack{t' \subseteq E \\ (t' \neq t)}} \frac{4\omega_{t'}^{2}}{\omega_{t}^{2} - \omega_{t'}^{2}} (\zeta_{ta, t'a}^{(y)})^{2} \\ &+ 3 \bigg\{ 1 - \frac{1}{2} \sum_{i} \left[(l_{i, ta}^{(y)})^{2} + (l_{i, tb}^{(y)})^{2} \right] \bigg\} \bigg\}, \quad (10) \end{split}$$

and

$$\alpha_t^B(\text{anharm}) = -4\pi B_e^2 \left(\frac{c}{h}\right)^{1/2} \sum_{s \subset A_1} \frac{k_{tatas} a_s^{(yy)}}{\omega_s^{3/2}}.$$
 (11)

Similarly for $\alpha_s^{A}(\text{harm})$ and $\alpha_s^{A}(\text{anharm})$; for the non-degenerate modes

$$\alpha_s^A(\text{harm}) = -\frac{2A_e^2}{\omega_s} \cdot 3[1 - \sum_i (l_{i,s}^{(z)})^2],$$
 (12)

and

$$\alpha_{s}^{A}(\text{anharm}) = -4\pi A_{e}^{2} \left(\frac{c}{h} \right)^{1/2} \times \left[\frac{3k_{sss}a_{s}^{(zz)}}{\omega_{s}^{3/2}} + \sum_{\substack{s' \subset A_{1} \\ (s'+s)}} \frac{k_{sss}a_{s'}^{(zz)}}{\omega_{s}^{3/2}} \right], \tag{13}$$

and for the doubly-degenerate modes

$$\begin{split} \alpha_t^{A}(\text{harm}) &= -\frac{2A_e^2}{\omega_t} \left[\sum_{\substack{t' \subset E \\ (t' \neq t)}} \frac{4\omega_{t'}^2}{\omega_t^2 - \omega_{t'}^2} (\zeta_{ta,t'b}^{(z)})^2 \right. \\ &\left. - 3(\zeta_{ta,tb}^{(z)})^2 + 3\{1 - \sum_i (l_{i,ta}^{(z)})^2\} \right], \end{split} \tag{14}$$

and

$$\alpha_t^{A}(\text{anharm}) = -4\pi A_e^2 \left(-\frac{c}{h}\right)^{1/2} \sum_{s \subset A_1} \frac{k_{tatas} a_s^{(zz)}}{\omega_s^{3/2}}.$$
 (15)

Since the harmonic parts, $\alpha_s^B(\text{harm})$ and $\alpha_s^A(\text{harm})$, are determined by only the quadratic force constants, we may calculate their values from the harmonic force field. That of methyl iodide is reasonably well known, $^{8-10)}$ and we have used in the present calcu-

Table 1. α_s^B and α_s^A for CH_3I , in cm⁻¹

s	$\alpha_s^{B}(\text{obs})^{a}$	$\alpha_s^B(\text{harm})$	$\alpha_8^B(anharm)$
1	0.00017	-0.000075	0.00024
2	0.000849b)	0.000066ы	0.000783
3	0.001811	-0.000657	0.002468
4	-0.000122	-0.000078	-0.000044
5	0.000058ы	-0.000095^{b}	0.000153
6	0.000787	0.000105	0.000682
s	$\alpha_s^A(\text{obs})^{a}$	$\alpha_s^A(\text{harm})$	$\alpha_s^A(anharm)$
1	0.0514	-0.0450	0.0964
2	-0.0222	-0.0137	-0.0085
3	-0.0038	-0.0003	-0.0035
4	0.0311	-0.0588	0.0899
5	0.0460	0.0504	-0.0044
6	-0.0347	0.0128	-0.0475

a) For sources, see Table I of Ref. 1.

Table 2. α_s^B and α_s^A for CD_3I , in cm⁻¹

s	$\alpha_s^B({\rm obs})^{{\bf a})}$	$\alpha_s^B(\text{harm})$	$\alpha_s^B(anharm)$	
1	0.000135	-0.000062	0.000197	
2	0.00103	0.000605	0.00043	
3	0.00126	-0.000425	0.00168	
4	0.000086	-0.000070	0.000156	
5	-0.000403	-0.000366	-0.000037	
6	0.000494	0.000089	0.000405	
s	$\alpha_s^A ({\rm obs})^{a}$	$\alpha_s^A(\text{harm})$	$\alpha_s^A(\text{anharm})$	
1	0.0232	-0.0151	0.0383	
2	-0.0078	-0.0058	-0.0020	
3		-0.0000		
4	0.0135	-0.0192	0.0327	
5	0.0148	0.0174	-0.0026	
6	-0.0135	0.0025	-0.0160	

a) For sources, see Table I of Ref. 1. Recently microwave spectra of CD₃I in the excited vibrational states have been measured and values for α₂^B, α₃^B, α₅^B, and α₆^B have been obtained (Y. Kawashima and K. Kozima, Symposium on Molecular Structure, Sendai, 1972).

lations the hybrid-orbital force field determined by Russell, Needham and Overend.⁹⁾ The anharmonic parts, $\alpha_s^B(\text{anharm})$ and $\alpha_s^A(\text{anharm})$, are then obtained by subtracting the calculated values of $\alpha_s^B(\text{harm})$ and $\alpha_s^A(\text{harm})$ from the experimental values of α_s^B and α_s^A . The experimental values of α_s^B and α_s^A , the calculated values of $\alpha_s^B(\text{harm})$ and $\alpha_s^A(\text{harm})$, and $\alpha_s^B(\text{anharm})$ and $\alpha_s^A(\text{anharm})$ are listed in Tables 1 and 2.

The observed values of α_2^B and α_5^B for CH₃I have been corrected for the Coriolis interaction between ν_2 and $\nu_5^{11)}$; we use the symbols $\alpha_2^{B'}$ and $\alpha_5^{B'}$ for these corrected quantities. Thus $\alpha_2^{B'}$ and $\alpha_5^{B'}$ are given by

$$\alpha_s^{B'} = \alpha_s^{B'}(\text{harm}) + \alpha_s^{B}(\text{anharm}) \quad (s=2 \text{ or } 5)$$
 (16)

and $\alpha_s^{B'}(\text{harm})$ corresponds to the quantity obtained by dropping the term containing $\zeta_{2,5a}^{(y)}$ from the expression in Eq. (5).

l-Type Doubling Constants

The *l*-type doubling constant q_t consists of harmonic and anharmonic parts³ like α_*^B and α_*^A ;

$$q_t = q_t(\text{harm}) + q_t(\text{anharm}). \tag{17}$$

For CH_3X type molecules, $q_t(harm)$ and $q_t(anharm)$ are given by

$$q_{t}(\text{harm}) = \frac{2B_{e}^{2}}{\omega_{t}} \left[\sum_{s \subset A_{1}} \frac{3\omega_{t}^{2} + \omega_{s}^{2}}{\omega_{t}^{2} - \omega_{s}^{2}} (\zeta_{s,ta}^{(y)})^{2} - \frac{3}{4} \frac{(a_{tb}^{(yz)})^{2}}{I_{zz}^{(e)}} \right], \tag{18}$$

which may be rewritten into

b) Not affected by the Coriolis interaction between ν_2 and ν_5 . In Table I of Ref. 1, footnote k should be given to the figures $+0.000849 \pm 0.000003$ and $+0.000058 \pm 0.000002$, but not to α_2^B and α_5^B ,

⁸⁾ J. Aldous and I. M. Mills, Spectrochim. Acta, 19, 1567 (1963).

⁹⁾ J. W. Russell, C. D. Needham, and J. Overend, J. Chem. Phys., 45, 3383 (1966).

¹⁰⁾ J. L. Duncan, A. Allan, and D. C. McKean, *Mol. Phys.*, **18**, 289 (1970).

$$q_{t}(\text{harm}) = \frac{2B_{e^{2}}}{\omega_{t}} \left[\sum_{s \in A_{1}} \frac{4\omega_{s^{2}}}{\omega_{t^{2}} - \omega_{s^{2}}} (\zeta_{s,ta}^{(y)})^{2} + 3 \sum_{i} \left\{ (l_{i,tb}^{(y)})^{2} - (l_{i,ta}^{(y)})^{2} \right\} \right], \tag{19}$$

and

$$q_{t}(\text{anharm}) = 8\pi B_{e}^{2} \left(\frac{c}{h}\right)^{1/2} \times \left[\frac{3k_{tatata}a_{ta}^{(yy)}}{\omega_{t}^{3/2}} + \sum_{\substack{t' \subset E \\ (t' \neq t)}} \frac{k_{tatat'a}a_{t'a}^{(yy)}}{\omega_{t'}^{3/2}}\right]. \quad (20)$$

The observed value of q_5 for CH₃I does not include the effect of the Coriolis interaction between ν_2 and ν_5 , ¹¹⁾ and its harmonic part, q_5 '(harm), is obtained by dropping the term containing $\zeta_{2,5a}^{(y)}$ from the expression in Eq. (18), which is then rewritten as

$$\begin{split} q_5'(\text{harm}) &= \frac{2B_e^2}{\omega_5} \left[\frac{4\omega_1^2}{\omega_5^2 - \omega_1^2} (\zeta_{1,5a}^{(y)})^2 \right. \\ &+ \frac{4\omega_3^2}{\omega_5^2 - \omega_3^2} (\zeta_{3,5a}^{(y)})^2 - 3(\zeta_{2,5a}^{(y)})^2 \\ &+ 3\sum_i \left\{ (l_{i,5b}^{(y)})^2 - (l_{i,5a}^{(y)})^2 \right\} \right]. \end{split} \tag{21}$$

The harmonic parts of the l-type doubling constants were calculated from the harmonic force field of Russell et al.⁹⁾ and were subtracted from the observed values¹²⁾ to obtain the anharmonic parts of the l-type doubling constants, q_t (anharm) (Table 3).

Table 3. q_t for CH_3I and CD_3I , in cm^{-1}

	t	$q_t({ m obs})$	$q_t(\text{harm})$	$q_t(anharm)$
	4		0.000073	
CH_3I	5	$-0.000022^{a,b}$	-0.000012^{b}	-0.000010
-	6	-0.000200°	-0.000266	0.000066
	4		0.000078	
$\mathrm{CD}_{\sharp}\mathrm{I}$	5	0.000580d)	0.000516	-0.000064
	6	-0.000126^{d}	-0.000204	0.000078

a) Ref. 11. b) Not affected by the Coriolis interaction between v_2 and v_5 . c) H. Matsuura and J. Overend, Spectrochim. Acta, 27A, 2165 (1971); see also footnote 18 of Ref. 11. d) D. R. Anderson and J. Overend, Spectrochim. Acta, 28A, 1231 (1972). The signs of q_5 and q_6 of CD₃I listed in this table are opposite to and the values are twice those reported by Anderson and Overend, because of different definitions of the q_t constant used. The values in this table are in accord with Mills' sign convention¹³⁾ and Eqs. (18) —(20).

Cubic Force Constants

From the anharmonic parts of the α_s^B , α_s^A and q_t constants, we obtain relations among the cubic normal-coordinate force constants through Eqs. (9), (11), (13), (15) and (20). α_s^B (anharm) and α_s^A (anharm) relate

the cubic constants k_{ss1} , k_{ss2} and k_{ss3} , and q_t (anharm) relates k_{tt4} , k_{tt5} and k_{tt6} . Thus α_s^B and α_s^A , and q_t are complementary in the anharmonic information they provide. Making use of the harmonic potential function⁹⁾ incalculating the $a_s^{(\xi 7)}$ coefficients appearing in the equations, we obtain the following explicit relations¹⁴⁾ for CH₃I from the α_s^B constants:

$$-0.03 k_{661} + 0.08 k_{662} - 2.83 k_{663} = 68 \text{ cm}^{-1}, \qquad (22)$$

from the α_s^A constants:

and

$$-0.18 k_{661} - 0.24 k_{662} - 0.08 k_{663} = -48 \text{ cm}^{-1}, \qquad (23)$$

and from the q_t constants:

$$0.28 k_{554} - 3.04 k_{555} + 0.15 k_{556} = -10 \,\mathrm{cm}^{-1},$$
 and

$$0.28 k_{664} - 1.01 k_{665} + 0.44 k_{666} = 66 \text{ cm}^{-1}.$$
 (24)

Similar relations are obtained for CD₃I:

$$-0.11\,k_{111}+0.03\,k_{112}-2.23\,k_{113}=20\,\mathrm{cm^{-1}},$$

$$-0.04 k_{221} + 0.09 k_{222} - 2.23 k_{223} = 43 \text{ cm}^{-1}$$

$$-0.04 k_{331} + 0.03 k_{332} - 6.69 k_{333} = 168 \text{ cm}^{-1},$$

$$-0.04\,k_{441}+\,0.03\,k_{442}-2.23\,k_{443}=\quad 16\,\mathrm{cm}^{-1},$$

 $-0.04 k_{551} + 0.03 k_{552} - 2.23 k_{553} = -4 \text{ cm}^{-1},$

and

$$-0.04 k_{661} + 0.03 k_{662} - 2.23 k_{663} = 41 \text{ cm}^{-1}, \qquad (25)$$

$$-0.31 k_{111} - 0.14 k_{112} - 0.02 k_{113} = 38 \text{ cm}^{-1},$$

$$-0.10 k_{221} - 0.43 k_{222} - 0.02 k_{223} = -2 \text{ cm}^{-1},$$

$$-0.10 k_{441} - 0.14 k_{442} - 0.02 k_{443} = 33 \text{ cm}^{-1}$$

$$-0.10 k_{551} - 0.14 k_{552} - 0.02 k_{553} = -3 \text{ cm}^{-1}$$

and

$$-0.10 k_{661} - 0.14 k_{662} - 0.02 k_{663} = -16 \text{ cm}^{-1},$$
 (26)

$$0.38 k_{554} - 4.79 k_{555} + 0.10 k_{556} = -64 \text{ cm}^{-1},$$

and

$$0.38 k_{664} - 1.60 k_{665} + 0.31 k_{666} = 78 \text{ cm}^{-1}.$$
 (27)

The signs of the k constants are in accord with those of the L matrix elements given in Table 4.15)

¹¹⁾ H. Matsuura, T. Nakagawa, and J. Overend, J. Chem. Phys., to be published. Detailed analysis of v_5 of CH_3I .

¹²⁾ The signs of the observed values for q_t , listed in Table 3, are in accord with Mills' sign convention¹³⁾ and are consistent with Eqs. (18)—(20).

¹³⁾ I. M. Mills, Pure Appl. Chem., 18, 285 (1969); G. J. Cartwright and I. M. Mills, J. Mol. Spectrosc., 34, 415 (1970).

¹⁴⁾ $k_{tts} = k_{tatas} = k_{tbtbs}$, $k_{ttt} = k_{tatata} = -(1/3)k_{tatbtb}$ and $k_{ttt} = k_{tatat} \cdot a = -k_{tbtb} \cdot a = -(1/2)k_{tatbt} \cdot b$.

¹⁵⁾ The geometry of the molecule and the internal-symmetry coordinates used in this study are the same as those of Russell et al. 9)

Table 4. Elements of the \boldsymbol{L} matrix, in amu-1/2

	L_{11}	L_{12}	L_{13}	L_{21}	L_{22}	L_{23}
CH_3I	1.007	0.011	0.004	-0.102	1.356	0.109
$\mathrm{CD_3I}$	0.720	0.020	0.007	-0.150	1.040	0.023
	L_{31}	L_{32}	L_{33}	L_{44}	L_{45}	L_{46}
$\overline{\mathrm{CH_{3}I}}$	-0.045	0.100	0.282	1.051	0.026	-0.025
CD_3I	-0.066	0.149	0.255	0.781	0.006	-0.012
	L_{54}	L_{55}	L_{56}	L_{64}	L_{65}	L_{66}
CH_3I	0.106	1.522	-0.133	-0.068	0.254	0.910
$\mathrm{CD_3}\mathrm{I}$	0.188	1.113	-0.051	-0.103	0.111	0.679

The determination of individual values for the kconstants is not possible from the above relations; the combination of Eqs. (22) and (23), or Eqs. (25) and (26) gives only relations between two k constants. For planar or pyramidal XY_3 molecules, the k constants appearing in the relations similar to Eqs. (22), (23), (25) and (26) can be determined uniquely, and some of the k constants have, in fact, been obtained from observed α_s^B and α_s^C for NH₃ and ND₃.²⁾

Overend and Machida⁵⁾ have made a simple calculation of the anharmonic force constants of the CH stretching modes for the methyl group, assuming a Morse function for a CH bond. Their estimation of the cubic force constants may be used to obtain other force constants, making use of the relations derived in this study. While the stretch-stretch cubic force constants may be estimated relatively easily,5) the estimation of the constants involving bending modes is not so simple, and the relations among the k constants are useful in estimating the latter. In Table 5 are listed the force constants estimated by Overend and Machida⁵⁾ and the new force constants of CH₃I and CD₃I determined in the present work. They are compared with the corresponding constants for NH₃ and ND_3 . The values of k_{111} , k_{444} , and k_{441} (the CD stretch-stretch force constants) for CD₃I were derived from the corresponding values for CH₃I by multiplying by the factor $[(\mu_D + \mu_C)/(\mu_H + \mu_C)]^{3/4} \simeq 0.63$, where $\mu_{\rm H}$, $\mu_{\rm D}$, and $\mu_{\rm C}$ are the reciprocals of the masses

Table 5. Estimates of the cubic normal-coordinate FORCE CONSTANTS, IN cm⁻¹, FOR CH₃I AND CD₃I AND CORRESPONDING CONSTANTS FOR NH3 AND ND3

	k ₁₁₁	k_{112}	k_{113}	k ₄₄₁	k_{442}	k_{443}
CH ₃ I	-173a)	-10	-4	-518a)	13	7
$\mathrm{CD_3I}$	—109ы	-33	-4	$-326^{b)}$	5	-2
$NH_3^{c)}$	-228	4		-603	136	
$\mathrm{ND_{3}^{c)}}$	-153	-77		-382	8 9	
	k ₄₄₄	k_{551}	k_{552}	k_{553}	k_{356}	
$\mathrm{CH_3I}$ $\mathrm{CD_3I}$	— 122ª) — 77 ^{b)}	61	-26	-7	29.614 ^{d)}	
NH ₃ c)	-142	87	-36			

a) Ref. 5. b) See text. c) Ref. 2. d) Absolute value, 11)

of H, D, and C atoms.

Duncan et al.¹⁰⁾ have estimated the interaction terms of the Fermi resonance between v_1 and $2v_5$ of CH_3I from the intensities of these parallel bands. From the interaction term, the value of $|k_{551}|$ is found to be 61 cm⁻¹. By comparing with the corresponding value $(+87 \text{ cm}^{-1})$ for NH₃,²⁾ it seems reasonable to take a positive sign for k_{551} . The values for k_{552} and k_{553} derived through the relations in Eqs. (22) and (23) are listed in Table 5. A value for k_{356} of CH₃I is also listed. This was obtained by the detailed analyses of the Fermi doublet, v_5 and $v_3 + v_6$. 11,16,17)

Discussion

There are 38 independent cubic normal-coordinate force constants for CH₃I or CD₃I. Of these, we have estimated or observed 11 constants for the former and 7 for the latter, as shown in Table 5. The stretchstretch-stretch constants (k_{111} , k_{444} and k_{441}) previously estimated for the $\mathrm{CH_3}$ and $\mathrm{CD_3}$ groups⁵⁾ are of the reasonable magnitudes, compared with those of NH₃ and ND₃, and the systematic variations of the values from those of the ammonia molecule are related closely to the values of the quadratic internal-coordinate force constants (i.e., 5.5 mdyn/Å for the methyl group and 7 mdyn/Å for ammonia).

In the present study, we have been able to estimate two stretch-stretch-bend interaction constants (k_{112}) and k_{442}) of the CH₃ or CD₃ group. The values obtained for k_{442} for CH_3I and CD_3I are found to be about ten times smaller than the corresponding values for NH₃ and ND₃. This difference may be real and may reflect structural differences between the CH₃ group and ammonia. Alternatively it may stem from approximation made in our analysis and, with this possibility in mind, we refrain from further comments. It is interesting to note, on the other hand, that the bend-bend-stretch constant (k_{551}) and the bend-bendbend constant (k_{552}) of CH_3I have magnitudes similar to those for NH₃.

The cubic constant k_{356} for CH_3I has been determined experimentally from the analyses of the perpendicular bands, v_5 and v_3+v_6 . The value obtained is only an absolute one, but is very accurate, i.e., $|k_{356}| = 29.6144 \pm 0.0007 \text{ cm}^{-1.11}$ The same force constant has also been determined from the Fermi doublets, $v_5 + v_6$ and $v_3 + 2v_6$, and $v_2 + v_5$ and $v_2 + v_3 + v_5$ v_6 , to be 29.572 ± 0.002 cm⁻¹ and 29.1 ± 0.2 cm⁻¹, respectively.18)

At the present time, we do not have individual values for the cubic force constants other than those listed in Table 5. However, the relations among the cubic force constants derived in the present study are useful in estimating other force constants and in discussing the vibrational anharmonicity in the methyl

¹⁶⁾ Y. Morino, J. Nakamura, and S. Yamamoto, J. Mol. Spec-

trosc., **22**, 34 (1967). 17) H. Matsuura and J. Overend, J. Chem. Phys., **55**, 1787 (1971).

¹⁸⁾ H. Matsuura and J. Overend, Spectrochim, Acta, 28A 1203 (1972).

halide molecules.

Numerical calculations in the present study were carried out with a NEAC 2200—700 computer (Nippon Electric Co., Ltd.) at the Computer Center of Osaka University.

The authors wish to thank Professor Tatsuo Miyazawa of Osaka University, Dr. Toru Nakagawa of the University of Tokyo, and Dr. Katsunosuke Machida of Kyoto University for their valuable discussions and suggestions.